RAS BiologyАгрохимия Agricultural Chemistry

  • ISSN (Print) 0002-1881
  • ISSN (Online) 3034-4964

Seasonal Changes in Anthropogenic Microbial Communities of Digistate and Silage

PII
S30344964S00021881250801112-1
DOI
10.7868/S30344964250801112
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 8
Pages
87-96
Abstract
By means of gravitational mass spectrometry, seasonal changes in anthropogenic microbial communities of digestate and silage were studied. It was shown that viruses are the first to be destroyed, followed by bacterial membranes, and the most resistant are fungi. Anthropogenic microbial communities cause disruption of the natural balance in nature, forming fine colloidal emulsions of naked genomes. Continuous monitoring of the penetration of anthropogenic microbial communities into the environment is required.
Keywords
антропогенные микробные сообщества дигистат силос бактерии вирусы грибы энзимы вода дальний порядок гравитационная масс-спектроскопия
Date of publication
20.12.2025
Year of publication
2025
Number of purchasers
0
Views
40

References

  1. 1. Zubow K.V., Zubow A.V., Zubow V.A. Digestate biocoenosis and its anthropogenic impact on ecology // Adv. Biol. 2024. V. 7. P. 223–238.
  2. 2. Zubow K.V., Zubow A.V., Zubow V.A. (2024) Expansion of R radiobacter strain R58. Ti-plasmid – bio time bomb // Adv. Biol. 2024. V. 6. P. 1–23.
  3. 3. Zubow K.V., Zubow A.V., Zubow V.A. Microbiocenoses in corn silage. Horizontal gene transfer // Adv. Biol. 2024. V. 8. P. 171–196.
  4. 4. Zubow K.V., Zubow A.V., Zubow V.A. The Way to the ETIs. Applied gravitational mass spectroscopy. NY: Nova Sci. Publ., 2014. 28 p.
  5. 5. Bogdanov E.V., Manturova G.M. Equicuster water model // Biomed. Electron. 2000. V. 7. P. 19–28.
  6. 6. Lenz A., Ojamäe L. On the stability of dence versus cage-shaped water clusters: Quantum-chemical investigations of zero-point energies, free energies, basisset effects and IR spectra of (H2O)12 and (H2O)20 // Chem. Phys. Let. 2006. V. 418. P. 361–367.
  7. 7. https://ru.wikipedia.org/wiki/Ti-плазмида
  8. 8. https://ru.ruwiki.ru/wiki/Макромолекула
  9. 9. Zubow K.V., Zubow A.V., Zubow V.A. 2023 Long-range molecular order in cereal cytoskeletons from northern Germany // Agricult. Res. Updat. 2023. V. 45. P. 195–210.
  10. 10. Zubow K.V., Zubow A.V., Zubow V.A. 2024 Effect of shock waves on the ring conformations of chromosomes of Staphylococcus aureus and its plasmid N315 // Horizons World Physic. 2024. (в печати).
  11. 11. https://en.wikipedia.org/wiki/Molten_globule
  12. 12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910952/
  13. 13. https://genome.ucsc.edu/cgi-bin/hgTracks?db=mm10&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr16%3A3854806%2D3857888&hgsid=2249962502_POjG5WK6mKV9UAc2jzgqEF2PIrpv
  14. 14. https://www.uniprot.org/uniprotkb/P24928/entry#structure
  15. 15. Cole S.Т. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence // Nature. 1998. V. 393. P. 537–544. https://www.nature.com/articles/24206
  16. 16. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://vmsmsu.ru/pe.pdf
  17. 17. https://de.wikipedia.org/wiki/Mycobacterium_tuberculosis
  18. 18. 251&pos=0&rpt=simage&source=serp&text=%D0%93%D0%B5%D0%BD%D0%BE%D0%BC%20%D0%95.coli
  19. 19. https://www.wikidoc.org/index.php/Escherichia_coli
  20. 20. https://de.wikipedia.org/wiki/Staphylococcus_aureus
  21. 21. https://de.wikipedia.org/wiki/Escherichia-Phage_T4
  22. 22. https://www.ncbi.nlm.nih.gov/nuccore/9628431
  23. 23. https://ru.wikibrief.org/wiki/Influenza_A_virus
  24. 24. Zubow K.V., Zubow A.V., Zubow V.A. (2023) Molecular mechanism of glucose breakdown in the human brain in vivo // Horizons in Neurosci. Res. 2023. V. 49. P. 1–12.
  25. 25. https://pmc.ncbi.nlm.nih.gov/articles/PMC162263/#:~:text=The%20mitochondrial%20DNA%20 (mtDNA)%20of,Dassociated%20protein%20(VAR1)
  26. 26. https://www.tandfonline.com/doi/full/10.1080/23802359.2020.1825129#:~:text=Its%20mitochondrial%20genome%20was%20sequenced,configuration%20of%20Aspergillus%20mitochondrial%20genome.)
  27. 27. Zubow K.V., Zubow A.V., Zubow V.A. The Phenomenon of proton dissolving in vacuum and of proton condensation from vacuum. Two forms of protons, structure of nuclei, electrons and atoms // J. Modern Physic. 2010. V.1. № 1. P.175–184.
  28. 28. https://www.researchgate.net/publication/228928173_The_Phenomenon_of_Proton_Dissolving_in_Vacuum_and_of_Proton_Condensation_from_Vacuum_Two_Forms_of_Protons_Structure_of_Nuclei_Electrons_and_Atoms
  29. 29. Zubow K.V., Zubow A.V., Zubow V.A. Nature of energy. Phenomenon of electric neutral particles’ emission in chemical and mechano-chemical reactions // Horizons World Physic. 2014. V. 22. P. 37–52.
  30. 30. https://www.novapublishers.com/catalog/product_info.php?products_id=50340&osCsid=994455a7afd05deb707594aaf444ed06
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library