RAS BiologyАгрохимия Agricultural Chemistry

  • ISSN (Print) 0002-1881
  • ISSN (Online) 3034-4964

Insecticidal compositions of natural pyrethrins and substituted benzodioxolanes from vegetable oils

PII
10.31857/S0002188124120063-1
DOI
10.31857/S0002188124120063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 12
Pages
43-47
Abstract
In order to confirm the theoretical calculations of the validity of the use of natural pyrethrins together with the components of vegetable oils, biologically active compositions of insecticides isolated from Dalmatian chamomile (Pyrethrum cinerariaefolium) and synergistic substances obtained from sesame, kanang and anise oils have been developed. It was found that insecticidal compositions showed their effectiveness against model insect pests (greenhouse whitefly – Trialeurodes vaporariorum). It is shown that the developed compositions can be used as a promising basis for the creation of new means of protecting agricultural plants from insect pests.
Keywords
биологически активные композиции вещества-синергисты бензодиоксоланы инсектициды пиретрины
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Дорожкина Н.А. Справочник по защите сельскохозяйственных растений от вредителей и болезней. Минск: Урожай, 1969. 286 с.
  2. 2. Яхонтов В.В. Вредители сельскохозяйственных растений и продуктов Средней Азии и борьба с ними. Ташкент: Гос. изд-во УзССР, 1953. 663 с.
  3. 3. Соколов М.С., Семенов А.М., Спиридонов Ю.Я., Торопова T.Ю., Глинушкин А.П. Здоровая почва – условие устойчивости и развития агро- и социосфер (проблемно-аналитический обзор) // Изв. РАН. Сер. биол. 2020. № 1. С. 12–21. DOI: 10.31857/S0002332920010142
  4. 4. Kim D.Y., Kadam A., Shinde S., Saratale R.G., Patra J., Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities // J. Sci. Food Agricult. 2018. V. 98. № 3. P. 849–864. DOI: 10.1002/jsfa.8749
  5. 5. Sunding D., Zilberman D. The agricultural innovation process: research and technology adoption in a changing agricultural sector // Handbooks in Economics. 2001. V. 18. № 1A. P. 207–262. DOI: 10.1071/EA9940549
  6. 6. Banfalvi G. Antifungal activity of gentamicin B1 against systemic plant mycoses // Molecules. 2020. V. 25. № 10. P. 2401–2411. DOI: 10.3390/molecules25102401
  7. 7. Thevissen K., Kristensen H.H., Thomma B.P., Cammue B.P.A., François I.E.J.A. Therapeutic potential of antifungal plant and insect defensins // Drug Discovery Today. 2007. V. 12. № 21–22. P. 966–971. DOI: 10.2174/187221508786241684
  8. 8. Хрунин А.В. Биохимические и молекулярные аспекты метаболической устойчивости насекомых к инсектицидам // Агрохимия. 2001. № 7. С. 72–85.
  9. 9. Щеголев В.Н. Сельскохозяйственная энтомология. М.–Л: Сельхозгиз, 1960. 371 с.
  10. 10. Соколов М.С., Глинушкин А.П., Спиридонов Ю.Я., Торопова Е.Ю., Филипчук О.Д. Технологические особенности почвозащитного ресурсосберегающего земледелия (в развитие концепции ФАО) // Агрохимия. 2019. № 5. С. 3–20. DOI: 10.1134/S000218811905003X
  11. 11. Семенов А.М., Глинушкин А.П., Соколов М.С. Здоровье почвенной экосистемы: от фундаментальной постановки к практическим решениям // Изв. ТСХА. 2019. № 1. С. 5–18.
  12. 12. Соколов М.С., Спиридонов Ю.Я., Калиниченко В.П., Глинушкин А.П. Управляемая коэволюция педосферы – реальная биосферная стратегия XXI века (вклад в развитие ноосферных идей В.И. Вернадского) // Агрохимия. 2018. № 11. С. 3–18. DOI: 10.1134/S0002188118110091
  13. 13. Романова И.Н., Рыбченко Т.И., Птицына Н.В. Агробиологические основы производства зерновых культур. Смоленск: Смоленск. ГСХА, 2008. 109 с.
  14. 14. Романова И.Н., Беляева О.П., Птицына Н.В., Рыбченко Т.И. Совершенствование технологий производства зерна и семян в Центральном регионе России // Изв. СмоленскГУ. 2011. № 4(16). С. 101–108.
  15. 15. Терентьев С.Е., Птицына Н.В., Можекина Е.В. Азотное питание и качество пивоваренного солода // Пиво и напитки. 2017. № 6. С. 14–17.
  16. 16. Ториков В.Е., Птицына Н.В. Качество зерна озимой пшеницы в зависимости от сроков посева и уровня минерального питания // Вестн. АлтайГАУ. 2017. № 3(149). С. 11–15.
  17. 17. Chemcraft [Электр. ресурс]. Режим доступа: URL: https://www.chemcraftprog.com/
  18. 18. Sanders M.P.A., Barbosa A.J.M., Zarzycka B., Nicolaes G.A.F., Klomp J.P.G., De Vlieg J., Del Rio A. Comparative analysis of pharmacophore screening tools // J. Сhem. Inform. Model. 2012. V. 52. № 6. P. 1607–1620. DOI: 10.1021/ci2005274
  19. 19. Huang N., Shoichet B.K., Irwin J.J. Benchmarking sets for molecular docking // J. Med. Сhem. 2006. V. 49. № 23. P. 6789–6801. DOI: 10.1021/jm0608356
  20. 20. Shoichet B.K. Virtual screening of chemical libraries // Nature. 2004. V. 432. № 7019. P. 862–865. DOI:10.1038/nature03197
  21. 21. Sanders M.P.A., Barbosa A.J.M., Zarzycka B. Comparative analysis of pharmacophore screening tools // J. Сhem. Inform. Model. 2012. V. 52. № 6. P. 1607–1620. DOI: 10.1021/ci2005274
  22. 22. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein data bank // Nucl. Acid. Res. 2000. V. 28. № 1. P. 235–242. DOI: 10.1093/nar/28.1.235
  23. 23. Firefly computational chemistry program [Электр. ресурс]. Режим доступа: http://classic.chem.msu.su/gran/firefly/index.html
  24. 24. Neto A.C., Muniz E.P., Centoducatte R., Jorge F.E. Gaussian basis sets for correlated wave functions. Hydrogen, helium, first-and second-row atoms // J. Mol. Struct. THEOCHEM. 2005. V. 718. № 1–3. P. 219–224. DOI: 10.1016/j.theochem.2004.11.037
  25. 25. Муковоз П.П., Пешков С.А., Левенец Т.В., Сизенцов А.Н., Квитко А.В., Глинушкин А.П. Иновационные способы подавления микозов растений: подходы, решения, перспективы // Достиж. науки и техн. АПК. 2020. Т. 34. № 12. С. 19–27. DOI: 10.24411/0235-2451-2020-11203
  26. 26. Соколов М.С., Спиридонов Ю.Я., Глинушкин А.П., Каракотов С.Д. Стратегия фундаментально-прикладных исследований в сфере адаптивно-интегрированной защиты растений // Агрохимия. 2018. № 5. С. 3–12.
  27. 27. Соколов М.С., Санин С.С., Долженко В.И., Спиридонов Ю.Я., Глинушкин А.П., Каракотов С.Д., Надыкта В.Д. Концепция фундаментально-прикладных исследований защиты растений и урожая // Агрохимия. 2017. № 4. С. 3–9.
  28. 28. Mangalagiu I.I. Biological activity of some new azaheterocycles: 3rd French-Romanian colloquium on medicinal chemistry. Iasi, Romania, 2014. P. 194. DOI: 10.2478/achi-2014-0015
  29. 29. Rajput A.P., Kankhare A.R. Synthetic utility of aza-heterocyclics: A Short review // Inter. J. Pharm. Sci. Invent. 2017. V. 6. P. 19–25.
  30. 30. Слынько Н.М., Леонова И.Н. Синергизм инсектицидов и перспективы его использования // Агрохимия. 1987. № 10. С. 116–130.
  31. 31. Mukovoz P., Mukovoz V., Dankovtseva E. Isolation of Dalmatian chamomile extracts – environmentally friendly natural compounds with insecticidal action // IOP Conf. Ser.: Earth and Environmental Science. 17. ser. “XVII Inter. Youth Sci. and Environ. Baltic Region Countries Forum “ECOBALTICA”. 2020. P. 012010. DOI: 10.1088/1755-1315/578/1/012010
  32. 32. Бобовые: горох, фасоль, боб, чечевица, соя / сост. Т.Е. Лущиц. М.: Кн. дом, 2001. 80 с.
  33. 33. Болотских А.С., Велиева Т.М., Томах Е.О. Оптимальные способы посева, схемы размещения и густота растений фасоли овощной // Сб. научн. тр. по овощеводству и бахчеводству. М.: РАСХН, ВНИИО, 2006. Т. 2. С. 111–115.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library