RAS BiologyАгрохимия Agricultural Chemistry

  • ISSN (Print) 0002-1881
  • ISSN (Online) 3034-4964

Effect of endophytic strains of Bacillus subtilis on mycorrhization of wheat roots under salt stress

PII
10.31857/S0002188124010103-1
DOI
10.31857/S0002188124010103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
76-81
Abstract
The effect of inoculation of wheat plant seeds by cells of 2 endophytic strains of Bacillus subtilis on the formation of endomycorrhiza in the roots under salt stress was studied. It was found that the indicators of mycorrhization of plant roots decreased both during salt stress in the soil and during seed treatment with endophytic bacteria. At the same time, under conditions of salt stress, an increase in mycorrhization rates was found in plants inoculated with B. subtilis. It was revealed that B. subtilis bacteria reduced stress in plants resulting from soil salinization. The obtained results showed the possible nature of the simultaneous relationship of plants with representatives of two kingdoms – bacteria and fungi. Probably, under conditions of stress action on the host plants, it is more profitable for all 3 participants of the symbiotic system to survive together, preserving the reproductive potential for the next generations.
Keywords
Triticum aestivum L. засоленность почвы эндофитные бактерии Bacillus subtilis везикулярно-арбускулярная микориза взаимоотношения
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Lungoci C., Motrescu I., Filipov F., Rimbu C.M., Jitareanu C.D., Ghitau C.S., Puiu I., Robu T. Salinity stress influences the main biochemical parameters of Nepeta racemosa Lam. // Plants. 2023. V. 12. № 583. P. 1–15. https://doi.org/10.3390/ plants12030583
  2. 2. Trușcă M., Gâdea Ș., Vidican R., Stoian V., Vâtcă A., Balint C., Stoian V.A., Horvat M., Vâtcă S. Exploring the research challenges and perspectives in ecophysiology of plants affected by salinity stress //Agriculture. 2023. V. 13(3). № 734. P. 1–19. https://doi.org/10.3390/agriculture13030734
  3. 3. Branco S., Schauster A., Liao H.-L., Ruytinx J. Mechanisms of stress tolerance and their effects on the ecology and evolution of mycorrhizal fungi // New Phytol. 2022. V. 235. P. 2158–2175. https://doi.org/10.1111/nph.18308
  4. 4. Ren C.-G., Kong C.-C., Liu Z.-Y., Zhong Z.-H., Yang J.-C., Wang X.-L., Qin S.A. Perspective on developing a plant ‘holobiont’ for future saline agriculture // Front. Microbiol. 2022. V. 13. 763014. P. 1–13. https://doi.org/10.3389/fmicb.2022.763014
  5. 5. Devi N.O., Tombisana Devi R.K., Debbarma M., Hajong M., Thokchom S. Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) gainst Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici // Egypt. J. Biol. Pest. Control. 2022. V. 32. № 1. P. 1–14. https://doi.org/10.1186/s41938-021-00499-y
  6. 6. Курамшина З.М., Хайруллин Р.М., Сатарова Л.Р. Влияние эндофитных штаммов Bacillus subtilis на микоризацию корней злаков при имитации почвенной засухи // Агрохимия. 2015. № 5. С. 69–73.
  7. 7. Курамшина З.М., Хайруллин Л.Р. Саттарова Л.Р. Влияние эндофитного штамма Bacillus subtilis на микоризацию растений при засухе // Изв. Уфим. НЦ РАН. 2015. № 4–1. С. 86–88.
  8. 8. Kuramshina Z.M., Smirnova Y.V., Khairullin R.M. Influence of Bacillus subtilis and cadmium on the mycorrhization of wheat plants // Inter. Res. J. 2022. № 4–2(118). P. 103–106. https://doi.org/10.23670/IRJ.2022.118.4.090
  9. 9. Chen Q., Deng X., Elzenga J.T.M., van Elsas J.D. Effect of soil bacteriomes on mycorrhizal colonization by Rhizophagus irregularis – kinteractive effects on maize (Zea mays L.) growth under salt stress // Biol. Fertil. Soils. 2022. V. 58. P. 515–525. https://doi.org/10.1007/s00374-022-01636-x
  10. 10. Trouvelot A., Kough С., Gianinazzi-Pearson V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle // Physiological and genetical aspects of mycorrhizae / Eds. V. Gianinazzi-Pearson, S. Gianinazz. Paris: INRA Press, 1986. P. 217–221.
  11. 11. Курамшина З.М., Хайруллин Р.М., Андреева Ю.В. Влияние протравителей семян на микоризацию корней культурных растений // Агрохимия. 2014. № 1. С. 71–74.
  12. 12. Хайруллин Р.М., Минина Т.С., Иргалина Р.Ш., Загребин И.А., Уразбахтина Н.А. Эффективность новых эндофитных штаммов Bacillus subtilis в повышении устойчивости пшеницы к болезням // Вестн. Оренбург. Гос. ун-та. 2009. № 2. С. 133–137.
  13. 13. Alkobaisy J.S. Factors affecting mycorrhizal activity // Arbuscular mycorrhizal fungi in agriculture – new insights / Ed. Nogueira de Sousa R. 2023. http://dx.doi.org/10.5772/intechopen.104271
  14. 14. Delvian Rambey R. Effect of salinity on spore germination, hyphal length and root colonization of the arbuscular mycorrhizal fungi // IOP Conf. Ser.: Earth and Environmental Science. IOP Publishing Ltd, 2019. 260 012124. https://doi.org/10.1088/1755-1315/260/1/012124
  15. 15. Ji C., Chen Z., Kong X., Xin Z., Sun F., Xing J., Li C., Li K., Liang Z., Cao H. Biocontrol and plant growth promotion by combined Bacillus spp. inoculation affecting pathogen and AMF communities in the wheat rhizosphere at low salt stress conditions // Front. Plant Sci. 2022. V. 13. 1043171. https://doi.org/10.3389/fpls.2022.1043171
  16. 16. Kuramshina Z.M., Khairullin R.M. Endophytic strains of Bacillus subtilis promote drought resistance of plants // Rus. J. Plant Physiol. 2023. V. 70. № 3. P. 259. https://doi.org/10.31857/s0015330322600760
  17. 17. Kuramshina Z.M., Khairullin R.M. Improving salt stress tolerance of Triticum aestivum L. with endophytic strains of Bacillus subtilis // Rus. J. Plant Physiol. 2023. V. 70. P. 293. https://doi.org/10.31857/S001533032260070X
  18. 18. Ramakrishna W., Yadav R., Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin // Appl. Soil Ecol. 2019. V. 138. P. 10–18. https://doi.org/10.1016/ j.apsoil.2019.02.019
  19. 19. Yooyongwech S., Tisarum R., Samphumphuang T., Phisalaphong M., Cha-um S. Integrated strength of osmotic potential and phosphorus to achieve grain yield of rice under water deficit by arbuscular mycorrhiza fungi // Sci. Rep. 2023. V. 13. 5999. https://doi.org/10.1038/s41598-023-33304-x
  20. 20. Проворов Н.А. Растительно-микробные симбиозы как эволюционный континуум // Журн. общ. биол. 2009. Т. 70. № 1. С. 10–34.
  21. 21. Егоршина А.А., Хайруллин Р.М., Лукъянцев М.А., Курамшина З.М., Смирнова Ю.В. Фосфатмобилизирующая активность эндофитных штаммов Bacillus subtilis и их влияние на степень микоризации корней пшеницы // Журн. Сибир. фед. ун-та. Сер. Биол. 2011. Т. 4. № 2. С. 172–182.
  22. 22. Prisa D. Mycorrhizal symbioses and plant interactions // Karbala Inter. J. Modern Sci. 2023. V. 9. P. 194–207.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library