RAS BiologyАгрохимия Agricultural Chemistry

  • ISSN (Print) 0002-1881
  • ISSN (Online) 3034-4964

Influence of Abscisic Acid on Lipid-Transfer Protein Accumulation and Suberin Deposition in Pea Roots under Salinity

PII
S3034496425100075-1
DOI
10.7868/S3034496425100075
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 10
Pages
52-59
Abstract
It is known that plant responses to stress are coordinated by a variety of regulatory networks, including the induction of endogenous abscisic acid (ABA). The mechanism of the protective action of ABA was investigated, suggesting a conjugated interaction with lipid-transporting proteins (LTP) and their participation in the formation of lamellae of suberin in pea roots during salination. The immunohistochemical method showed that the NaCl-induced accumulation of LTP and ABA in the cell walls of the phloem was accompanied by the deposition of suberin in the endodermal region of the roots of pea seedlings. Unlike LTP, which were localized around phloem cells, ABA was present inside these cells. In addition, treatment of control plants with exogenous ABA led to the accumulation of LTP in phloem cells and contributed to root corking. Analysis of phloem exudate for the presence of LTP revealed an increase in their content under salinization conditions. These results indicate the importance of NaCl-induced accumulation of ABA in the regulation of LTP levels and enhanced formation of apoplastic barriers in the roots of pea plants.
Keywords
Array NaCl-засоление липид-транспортирующие белки (ЛТБ) абсцизовая кислота (АБК) суберин апопластные барьеры иммунолокализация
Date of publication
01.10.2025
Year of publication
2025
Number of purchasers
0
Views
29

References

  1. 1. Hoh F., Pons J.L., Gautier M.F., de Lamotte F., Dumas C. Structure of a liganded type 2 non-specific lipid transfer protein from wheat and the molecular basis of lipid binding // Acta Crystallogr. D. Biol. Crystallogr. 2005. V. 61. P. 397–406. https://doi.org/10.1107/S0907444905000417
  2. 2. Tassin S., Broekaert W.F., Marion D., Acland D.P., Ptak M., Vovelle F., Sodano P. Solution structure of ace-amp1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins // Biochem. 1998. V. 37. P. 3623–3637. https://doi.org/10.1021/bi9723515
  3. 3. Melnikova D.N., Mineev K.S., Finkina E.I., Arseniev A.S., Ovchinnikova T.V. A novel lipid transfer protein from the dill Anethum graveolens L.: Isolation, structure, heterologous expression, and functional characteristics // J. Pept. Sci. 2016. V. 22. 59–66. https://doi.org/10.1002/psc.2840
  4. 4. Bogdanov I.V., Shenkarev Z.O., Finkina E.I., Melnikova D.N., Rumynskiy E.I., Arseniev A.S., Ovchinnikova T.V. A novel lipid transfer protein from the pea Pisum sativum: Isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties // BMC Plant Biol. 2016. V. 16. P. 107–124. https://doi.org/10.1186/s12870-016-0792-6
  5. 5. Wang P., Calvo-Polanco M., Reyt G., Barberon M., Champeyroux C., Santoni V., Maurel C., Franke R.B., Ljung K., Novak O., Geldner N., Boursiac Y., Salt D.E. Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants // Sci. Rep. 2019. V. 9. P. 4227. https://doi.org/10.1038/s41598-019-40588-5
  6. 6. García-Garrido J.M., Menossi M., Puigdoménech P., Martínez-Izquierdo J.A., Delseny M. Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice // FEBS Lett. 1998. V. 428. P. 193–199. https://doi.org/10.1016/s0014-5793 (98)00529-8
  7. 7. Moraes G.P., Benitez L.C., do Amara M.N., Vighi I.L., Auler P.A., da Maia L.C., Bianchi V.J., Braga E.J.B. Expression of LTP genes in response to saline stress in rice seedlings // Genet. Mol. Res. 2015. V. 14. P. 8294–8305. https://doi.org/10.4238/2015.July.27.18
  8. 8. Xu Y., Zheng X., Song Y., Zhu L., Yu Z., Gan L., Zhou  S., Liu H., Wen F., Zhu C. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum // Sci. Rep. 2018. V. 8. P. 1–14. https://doi.org/10.1038/s41598-018-27274-8
  9. 9. Shao Y., Cheng Y., Pang H., Chang M., He F., Wang M., Davis D.J., Zhang S., Betz O., Fleck C., Dai T., Madahhosseini S., Wilkop T.E., Jernstedt J., Drakakaki G. Investigation of salt tolerance mechanisms across a root developmental gradient in almond rootstocks // Front. Plant Sci. 2020. V. 11. P. 595055. https://doi.org/10.3389/fpls.2020.595055
  10. 10. Edqvist J., Blomqvist K., Nieuwland J., Salminen T.A. Plant lipid transfer proteins: Are we finally closing in on the roles of these enigmatic proteins? // J. Lipid Res. 2018. V. 59. P. 1374–1380. https://doi.org/10.1194/jlr.R083139
  11. 11. Deeken R., Saupe S., Klinkenberg J., Riedel M., Leide J., Hedrich R., Mueller T.D. The nonspecific lipid transfer protein ATLTPI-4 is involved in suberin formation of Arabidopsis thaliana crown gall // Plant Physiol. 2016. V. 172. P. 1911–1927. https://doi.org/10.1104/pp.16.01486
  12. 12. Финкина Е.И., Мельникова Д.Н., Богданов И.В., Овчинникова Т.В. Белки системы врожденного иммунитета растений, осуществляющие транспорт липидов: структура, функции и практическое применение // Acta Naturae. 2016. Т. 8. № 2(29). С. 20–36. https://doi.org/10.32607/20758251-2016-8-2-47-61
  13. 13. Rahman M.M., Mostofa M.G., Rahman M.A., Miah  M.G., Saha S.R., Karim M.A., Keya S.S., Akter M., Islam M., Phan L.-S. Insight into salt tolerance mechanisms of the halophyte Achras sapota: An important fruit tree for agriculture in coastal areas // Protoplasma. 2019. V. 256. P. 181–191. https://doi.org/10.1007/s00709-018-1289-y
  14. 14. Coffey O., Bonfield R., Florine Corre F., Sirigiri J.A., Meng D., Fricke W. Root and cell hydraulic conductivity, apoplastic barriers and aquaporin gene expression in barley (Hordeum vulgare L.) grown with low supply of potassium // Ann. Bot. 2018. V. 122. P. 1131–1141. https://doi.org/10.1093/aob/mcy110
  15. 15. Finkelstein R. Abscisic acid synthesis and response // Arab. Book. 2013. V. 11. e0166. https://doi.org/10.1199/tab.0166
  16. 16. Wang C., Yang C., Gao C., Wang Y. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses // Tree Physiol. 2009. V. 29. P. 1607–1619. https://doi.org/10.1093/treephys/tpp082
  17. 17. Akhiyarova G.R., Finkina E.I., Ovchinnikova T.N., Veselov D.S., Kudoyarova G.R. Role of pea LTPs and abscisic acid in salt-stressed roots // Biomolecules. 2020. V. 10. P. 15. https://doi.org/10.3390/biom10010015
  18. 18. Arkhipova T., Martynenko E., Sharipova G., Kuzmina L., Ivanov I., Garipova M., Kudoyarova G. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants // Plants. 2020. V. 9. P. 1429. https://doi.org/10.3390/plants9111429
  19. 19. Bogdanov I.V., Finkina E.I., Balandin S.V., Melnikova D.N., Stukacheva E.A., Ovchinnikova T.V. Structural and functional characterization of recombinant isoforms of the lentil lipid transfer protein // Acta Nat. 2015. V. 7. P. 65–73. https://doi.org/10.32607/20758251-2015-7-3-65-73
  20. 20. Sharipova G., Veselov D., Kudsoyarova G., Fricke W., Dodd I., Katsuhara M., Furuichi T., Ivanov I., Veselov S. Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA deficient barley mutant Az34 // Ann. Bot. 2016. V. 118. P. 777–785. https://doi.org/10.1093/aob/mcw117
  21. 21. Фурст Г.Г. Методы анатомо-гистохимического исследования растительных тканей. М.: Наука, 1979. 155 с.
  22. 22. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697 (76)90527-3
  23. 23. Laemmli U. Most commonly used discontinuous buffer system for SDS electrophoresis // Nature. 1970. V. 227. Р. 680–686.
  24. 24. Buhot N., Gomès E., Milat M.-L., Ponchet M., Marion D., Lequeu J., Delrot S., Coutos-Thévenot P., Blein J.-P. Modulation of the biological activity of a tobacco LTP1 by lipid complexation // Mol. Biol. Cell. 2004. V. 15. P. 5047–5052. https://doi.org/10.1091/mbc.E04-07-0575
  25. 25. Edstam M.M., Laurila M., Höglund A., Raman A., Dahlström K.M., Salminen T.A., Edqvist J., Blomqvist  K. Characterization of the GPI-anchored lipid transferproteins in the moss Physcomitrellapatens // Plant Physiol. Biochem. 2014. V. 75. P. 55–69. https://doi.org/10.1016/j.plaphy.2013.12.001
  26. 26. Hartung W., Sauter A., Hose E. Abscisic acid in the xylem: Where does it come from, where does it go to? // J. Exp. Bot. 2002. V. 53. P. 27–33. https://doi.org/10.1093/jxb/53.366.2
  27. 27. Hijaz F., Killiny N. Collection and chemical composition of phloem sap from Citrus sinensis L. Osbeck (sweet orange) // PLoS ONE. 2014. V. 9. e101830. https://doi.org/10.1371/journal.pone.0101830
  28. 28. Lee S.B., Suh M.-C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein 15 affects seed coat permeability in Arabidopsis // Plant J. 2018. V. 96. P. 1206–1217. https://doi.org/10.1111/tpj.14101
  29. 29. Rains M.K., de Silva N.D.G., Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues // Tree Physiol. 2018. V. 38. P. 340–361. https://doi.org/10.1093/treephys/tpx06
  30. 30. Melnikova D.N., Finkina E.I., Bogdanov I.V., Tagaev A.A., Ovchinnikova T.V. Features and possible applications of plant lipid-binding and transfer proteins // Membranes. 2023. V. 13. P. 2. https://doi.org/10.3390/membranes13010002
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library