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ВВЕДЕНИЕ

Согласно ФЗ № 109 “О безопасном обращении 
с пестицидами и агрохимикатами” [1], пестици-
ды – вещества или смесь веществ, в том числе ис-
пользуемые в качестве регуляторов роста растений, 
феромонов, дефолиантов, десикантов и фумиган-
тов, и препараты химического или биологическо-
го происхождения, предназначенные для борьбы 
с вредными организмами.

По данным Продовольственной и сельскохозяй-
ственной организации ООН, использование пе-
стицидов за последние 30 лет выросло более чем 
в 2 раза  [2]. В связи с этим актуальность проблемы 
определения пестицидов с каждым годом возрастает. 
Это подтверждается проведенным анализом литера-
туры, представленной на платформе ScienceDirect.
com: количество исследовательских статей по запро-
су “определение пестицидов” выросло с 739 в 2000 г. 
до 5861 в 2023 г. (рис. 1).

Всемирная организация здравоохранения сооб-
щает, что пестициды потенциально токсичны для 
других организмов, включая человека, спустя мно-
гие десятилетия после их применения на аграрных 
территориях. Многие из старых и более дешевых 
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Многие действующие вещества пестицидов являются опасными токсикантами, способными нару-
шать стабильность природных и агрокультурных экосистем и причинять необратимый вред здоро-
вью человека при попадании в организм. Кроме того, ежегодно разрабатывают от нескольких единиц 
до нескольких десятков новых действующих веществ пестицидов и препаратов на их основе. Это 
определяет критическую необходимость в контроле их применения и содержания в объектах окру-
жающей среды, особенно в сельскохозяйственной продукции. Развитие современных химических 
аналитических методов помогает повысить эффективность такого контроля. Совершенствование 
методов экстрагирования пестицидов из крайне сложных матриц почв и сельскохозяйственной про-
дукции позволяет значительно ускорить и удешевить проведение единичного анализа, а улучшение 
аналитического оборудования позволяет определять пикограммовые содержания целевых пестици-
дов или проводить мониторинговые исследования образцов для идентификации загрязнителей.
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Рис. 1. График роста публикационной активности 
по  теме определения пестицидов в  период с  2000 
по 2023 г.
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пестицидов, таких как дихлордифенилтрихлорэтан 
(ДДТ) и линдан, могут годами оставаться как в поч-
ве, так и в воде [3].

Контроль за уровнем содержания пестицидов 
в объектах окружающей среды, включая сельскохо-
зяйственную продукцию, развивается и ужесточается. 
Например, список контролируемых действующих 
веществ пестицидов расширялся с 571 наименова-
ния в 2013 г. до 603 – в 2018 г. и затем до 627 в 2021 г. 
(ГН 1.2.3111-13, ГН 1.2.35.39-18, СанПиН 1.2.3685-21 
соответственно), а максимальные допустимые уров-
ни (МДУ) многих веществ планомерно снижались.

Основным способом контроля применения пести-
цидных препаратов в объектах окружающей среды 
является количественное определение их действую- 
щих веществ. Сегодня широкое применение при 
определении пестицидов получили такие методы, 
как газовая хроматография (ГХ), высокоэффектив-
ная жидкостная хроматография (ВЭЖХ), тандемная 
масс-спектрометрия (МС/МС) и ее сочетания с вы-
шеуказанными методами. Несмотря на последние 
достижения в разработке высокоточных и высоко-
чувствительных методов, определение пестицидов 
по-прежнему остается актуальной проблемой для 
многих исследователей. Большое разнообразие ис-
пользуемых пестицидов, постоянный рост производ-
ства все новых препаратов, сложный состав и раз-
нообразие исследуемых матриц требует не только 
высокоточного оборудования, но и создания более 
экспрессных и эффективных подходов к решению 
данной проблемы [4].

Цель работы – предоставление актуальной ин-
формации о наиболее часто применяемых пестици-
дах в аграрной промышленности и о современных 
методах их количественного определения.

ПРИМЕНЕНИЕ ПЕСТИЦИДОВ В СЕЛЬСКОМ 
ХОЗЯЙСТВЕ

Использование пестицидов в сельском хозяйстве 
Российской Федерации растет. По данным Росстата, 
в 2018 г. применение пестицидов составило 154.3 т, 
в 2022 г.  – уже 215.6 т. Увеличение спроса происходит 
за счет интенсификации сельского хозяйства и ввода 
новых земель сельскохозяйственного назначения. При 
этом доля гербицидов в общей массе была равна 68, 
фунгицидов – 17, инсектицидов – 14% [5, 6].

Согласно результатам исследования [7], наиболь-
шее распространение в отечественном сельском 
хозяйстве получили препараты на основе следую-
щих действующих веществ гербицидов, фунгицидов 
и инсектицидов. В табл. 1 представлены некоторые 
их представители и их предельно допустимые кон-
центрации в сельскохозяйственной продукции (с. п.).

Основным механизмом загрязнения сельско-
хозяйственной продукции пестицидами является 
их миграция по трофическим уровням [6]. Из-за 
низкой эффективности методов применения пе-
стицидных препаратов многие сельхозпредприя-
тия используют дозировки, в разы превышающие 
необходимые нормы. Избыток препаратов остается 
в почве или мигрирует в водоемы, расположенные 
недалеко от полей. Основной причиной низкой эф-
фективности использования пестицидов является 
плохое удержание пестицидов на целевой поверхно-
сти листьев сельскохозяйственных культур. Во-пер-
вых, более 50% капель распыляемых пестицидов 
демонстрируют нежелательное поведение при рас-
пылении в виде разбрызгивания и подпрыгивания 
на поверхности листьев, поскольку большая часть 
поверхности листьев растений обладает гидрофоб-
ной природой из-за их шероховатой структуры и по-
крытия воском [8]. Во-вторых, осевшие пестициды 
довольно легко удаляются с поверхности листвы 
в неблагоприятных погодных условиях, например, 
при дожде, поскольку между веществом пестицида 
и поверхностью листьев растений нет сильного взаи-
модействия [9]. Таким образом, ключевым путем для 
снижения пестицидной нагрузки на объекты окру-
жающей среды является повышение эффективности 
их применения, что подразумевает регулирование 
смачивания и улучшение осаждения распыленных 
пестицидов на водоотталкивающую поверхность 
листьев растений и усиление адгезии пестицидов 
к поверхности листьев, увеличение их устойчивости 
к фотолизу, дождю или другим факторам окружаю-
щей среды [10]. Наиболее перспективные разработки 
в этом направлении представлены в табл. 2.

Основным направлением совершенствования 
применения пестицидов является разработка различ-
ных добавок к распыляемым растворам и суспензиям 
пестицидов. Но данный подход обладает рядом су-
щественных недостатков, среди которых могут быть 
дороговизна и/или сложность производства и при-
менения данных добавок, потенциальная токсич-
ность для человека и окружающей среды. Поэтому 
наибольшее распространение на современном рынке 
получили модернизированные системы распыления 
пестицидов, например электростатическое распыле-
ние. Однако даже они не позволяют избежать необхо-
димости применения избытка пестицидов. Большое 
разнообразие пестицидных препаратов, их высокая 
токсичность, а также ужесточение требований к без-
опасности сельскохозяйственной продукции требу-
ют разработки новых эффективных аналитических 
методов контроля пестицидов как в продукции, так 
и объектах окружающей среды.
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СОВРЕМЕННЫЕ ПОДХОДЫ В МЕТОДАХ 
ОПРЕДЕЛЕНИЯ ПЕСТИЦИДОВ 

В СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОДУКЦИИ

Определение пестицидов с использованием ин-
струментальных аналитических методов включает 
в себя несколько основных этапов: гомогенизацию 
образца, экстракцию из матрицы, очистку экстрак-
та и идентификацию аналита. Каждый этап облада-
ет рядом лимитирующих стадий. Перевод аналита 
из матрицы в органический экстракт называется 
экстракцией. На данном этапе лимитирующей ста-
дией становится извлечение аналитов и получение 
экстракта, содержащего минимальное количество 
компонентов матрицы. С целью оптимизации данно-
го этапа полученный экстракт подвергают отдельному 

этапу очистки. Данный этап позволяет не только 
избавиться от мажорных компонентов матрицы, 
но и в ряде случаев сконцентрировать определяемые 
компоненты пробы [4].

Экстракция и очистка экстрактов. Жидкость-жид-
костная экстракция (ЖЖЭ) – перевод одного или 
нескольких компонентов раствора из одной жидкой 
фазы в контактирующую и не смешивающуюся с ней 
другую жидкую фазу. Для экстракции пестицидов 
используют различные растворители или смеси рас-
творителей, например, гексан [11], ацетонитрил [12], 
дихлорметан-ацетон [13], этилацетат-циклогексан [14] 
и др. В работе [15] для извлечения большого коли-
чества разных пестицидов к измельченным образ-
цам шпината (50 г), мандаринов (50 г) и риса  (25 г), 

Таблица 1. Перечень ПДК пестицидов, применяемых в России

Наименование группы Наименование пестицида ПДК в с. п., мг/кг

Гербициды

2,4-Д (2,4-диxлорфеноксиуксусная кислота) 0.01
Флорасулам 0.05
Флуметсулам 1.00
Амидосульфурон 0.10
Йодосульфурон-метил натрия 0.01
Мефенпир-диэтил 0.01
Трибенурон-метил 0.01
Феноксапроп-П‑этил 0.01
Клоквинтосет-мексил 0.10
Глифосат 0.05

Фунгициды

Карбендазим 0.05
Пропиконазол 0.01
Беномил 0.015
Флутриафол 0.05
Тебуконазол 0.01
Пираклостробин 0.02
Ципроконазол 0.05
Азоксистробин 0.01
Димоксистробин 0.05
Боскалид 0.02

Инсектициды

Циперметрин 0.005
Цигалотрин 0.01
Диметоат 0.05
Имидаклоприд 0.02
Тиаметоксам 0.02
Ацетамиприд 0.03
Дифеноконазол 0.02
Хлорпирифос 0.05
Индоксакарб 0.01
Малатион 0.01
Хлорантранилипрол 0.01
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разбавленных водой (30 мл), добавляли 100 мл аце-
тонитрила и отстаивали в течение 2 ч. Затем, после 
гомогенизации, смесь фильтровали, а фильтрат со-
бирали в делительную воронку. Добавляли 15 г хло-
рида натрия и интенсивно встряхивали. После этого 
отбирали 10 мл органической фазы, концентриро-
вали на водяной бане при 40 °C и растворяли в 4 мл 
дихлорметана, содержащего 1% метанола. Получен-
ный экстракт подвергали очистке при помощи ТФЭ 
(твердофазной экстакции) с использованием специ-
ального картриджа. Результат очистки выпаривали, 
перерастворяли в 5 мл ацетонитрила и подвергали 
анализу. Авторы [16] для повышения эффективно-
сти экстракции использовали смесь из атцеонитрила 
и циклогесана, т. к. ЖЖЭ применяли для извлечения 
широкого спектра пестицидов из различных сель-
скохозяйственных продуктов, таких как рис, огур-
цы, паприка, виноград, пшеничная мука и яблоки. 
В гомогенизированные образцы добавляли 200 мл 
ацетонитрила и 35 г хлорида натрия. Смесь гомоге-
низировали, добавляли 100 мл смеси этил ацетата/
циклогексана (1 : 1). Смесь повторно гомогенизиро-
вали и отстаивали до разделения фаз. Полученные 
200 мл органической фазы фильтровали через фильтр, 

содержащий 100 г сульфата натрия, в круглодонную 
колбу. Фильтр четырежды промывали смесью этил 
ацетата/циклогексана (1 : 1) порциями по 20 мл. 
Фильтрат выпаривали до водянистого остатка, до-
бавляли 7.5 мл этил ацетата до полного растворения 
остатка от упаривания, 5 г солевой смеси (сульфат/
хлорид натрия, 1 : 1), перемешивали, добавляли 7.5 
мл циклогексана, снова перемешивали. После от-
стаивания супернатант подвергали анализу. На се-
годняшний день от использования метода ЖЖЭ все 
чаще отказываются ввиду его трудоемкости, доро-
говизны, требования большого количества потен-
циально опасных растворителей.

Дальнейшее развитие ЖЖЭ получила в форма-
те дисперсионной жидкость-жидкостной микро-
экстракции (ДЖЖМЭ). Метод разработан в 2006 г. 
В его основе лежит трехкомпонентная система рас-
творителей, состоящая из анализируемого водного 
раствора, неполярного органического растворите-
ля-экстрагента с плотностью большей, чем у воды, 
и полярного органического растворителя-диспер-
гента, смешивающегося с водой и экстрагентом. 
В качестве экстрагентов в этом варианте ДЖЖМЭ 

Таблица 2. Различные стратегии увеличения эффективности применения пестицидов

Способ Преимущества Недостатки Источник

Электростатическое 
распыление

Высокая точность 
распыления

Слабое взаимодействие 
с поверхностью листа 128

Уменьшение размера капель Высокая эффективность 
осаждения Сложное техобслуживание 129

Полимерные добавки Высокая эффективность 
осаждения Токсичность 130

Добавки поверхностно 
активных веществ

Высокая эффективность 
осаждения Токсичность 131

Добавки растительных масел Высокая эффективность 
осаждения

Высокая стоимость,
закрытие устьиц листьев 132

Добавки полиэлектролитов Высокая эффективность 
осаждения

Высокая сложность 
использования 133

Добавки наночастиц оксида 
титана

Высокая эффективность 
осаждения Токсичность 134

Добавка нанокапсул 
с кремнеземной оболочкой

Контролируемое 
высвобождение 

пестицидов

Слабое взаимодействие 
с поверхностью листа 135

Добавка наночастиц 
авермектина

Контролируемое 
высвобождение 

пестицидов

Сложный процесс 
производства 

и использования,
низкая эффективность 

осаждения

136

Добавка наногеля
Высокая эффективность 

осаждения,
устойчивость к удалению.

Токсичность 137
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чаще всего используют хлороформ (42%), дихлорэтан 
(18%), четыреххлористый углерод (15%), а в качестве 
диспергентов – ацетонитрил (56%) и метанол (28%). 
Другие диспергирующие растворители, например, 
ацетон и этанол, применяют значительно реже [17]. 
Инструментальное направление ДЖЖМЭ нацелено 
на отказ от использования диспергентов. В работах 
чаще всего встречаются ультразвуковое дисперги-
рование [18], вихревое диспергирование [19], дис-
пергирование пузырьками воздуха [20] и др. В дан-
ном случае основными параметрами, влияющими 
на эффективность экстракции, являются время про-
ведения экстрагирования, используемый органиче-
ский растворитель, отношение объема растворите-
ля к объему образца, использование высаливания 
и применяемые для него реагенты, температура и рН 
пробы. Разработка и применение новых, нетипич-
ных экстрагентов – одно из актуальных направлений 
развития данного метода. В классическом вариан-
те применяют растворители с большей чем у воды 
плотностью (хлороформ, хлорбензол, тетрахлорме-
тан и тетрахлорэтилен). Однако есть возможность 
применять и более “легкие” растворители – гексан, 
циклогексан, гексадекан, м-ксилол, ундеканол, до-
деканол [21]. Такие растворители обладают меньшей 
токсичностью и хорошо сочетаются с такими мето-
дами, как высокоэффективная жидкостная хромато-
графия (ВЭЖХ) и капиллярный элеткорфорез (КЭ). 
Главным недостатком таких растворителей является 
склонность “легких” растворителей распределяться 
по поверхности воды в виде тончайшей пленки, что 
затрудняет отбор органической фазы.

Альтернативой таким растворителям являются 
ионные жидкости (ИЖ). В традиционном вариан-
те берут 30–60 мкл гидрофобной ИЖ, выбранной 
в качестве экстрагента, смешивают с 200–500 мкл 
диспергента, в качестве которого чаще всего ис-
пользуют метанол (ацетонитрил, ацетон, этанол 
или гидрофильную ИЖ). Полученную смесь ИЖ 
и диспергента при помощи шприца быстро вводят 
в анализируемую пробу и перемешивают вручную 
в течение нескольких минут. После центрифугиро-
вания в течение 5–10 мин выделившуюся фазу экс-
тракта, находящуюся на дне конической пробирки, 
отбирают при помощи микрошприца, разбавляют 
метанолом для снижения вязкости экстракта и ис-
пользуют для анализа [22]. В некоторых случаях этап 
центрифугирования заменяют введением в раствор 
деэмульгатора (чаще всего это ацетонитрил, метанол, 
этанол), вследствие чего происходит разрушение 
эмульсии [23]. Ограничением ДЖЖМЭ с ИЖ яв-
ляется невозможность определения сконцентриро-
ванных органических соединений методом газовой 
хроматографии [22].

Параллельно развитию ДЖЖМЭ широкое при-
менение получил метод однокапельной микроэкс-
тракции (single drop microextraction, SDME). Впервые 

в современном виде данный метод был представлен 
в 1997 г. [24]. В качестве водной фазы использовали 
водные растворы 4-метилацетофенона, прогесте-
рона, 4-нитротолуола и малатиона с известными 
концентрациями. Органическая фаза представляет 
собой н-октан, содержащий фиксированную кон-
центрацию внутреннего стандарта, представляюще-
го собой н-тетрадекан, н-октадекан или н-додекан. 
В работе [25] экстрагирование проводили следую-
щим образом: в шприц объемом 2 мкл отбирали ор-
ганическую фазу, 1 мкл которой сразу же выпускали 
в виде капли. Этим шприцом протыкали мембрану 
виалы, в которой находится водный раствор пробы, 
при этом капля органического растворителя в него 
не попадала. Выпускали из шприца оставшийся 
1  мкл органического растворителя, который обра-
зовывал каплю на кончике иглы. После перемеши-
вания в течение заданного периода времени отбира-
ли шприцом 2 мкл, таким образом отбирая и каплю 
органического экстракта, и 1 мкл водного раствора. 
После шприц вынимали, 1 мкл водного раствора 
вытесняли, протирали иглу салфеткой, а органиче-
ский экстракт вводили в газовый хроматограф. Часто 
для увеличения эффективности экстракции в таких 
случаях использовали водный раствор пробы со зна-
чительным содержанием полярного органического 
растворителя. Это связано с тем, что водные растворы 
проб часто представляют из себя эмульсию, что силь-
но осложняет процесс экстракции [25]. Добавление 
в образец неорганических солей, таких как хлорид 
натрия, снижает растворимость пестицидов ввиду 
повышения ионной силы раствора, что приводит 
к увеличению эффективности экстракции. В свою 
очередь это влияет на выбор растворителя для капли: 
он не должен растворяться в полученном растворе, 
иначе проведение экстракции будет невозможно. 
Кроме того, растворитель должен быть нелетучим 
и вязким для обеспечения стабильности капли при 
проведении экстракции. Объем капли также явля-
ется важным фактором: при его увеличении растет 
количество экстрагируемых аналитов, но при этом 
уменьшается стабильность самой капли. Темпера-
тура имеет неоднозначное влияние на процесс экс-
трагирования. Увеличение температуры приводит 
к увеличению диффузии аналита как в органический 
растворитель, так и из него, однако при этом темпе-
ратура в значительной степени определяет стабиль-
ность капли и ее растворимость в водном растворе. 
Некоторые исследования показали положительное 
влияние увеличения температуры на эффективность 
экстракции [24], в других же говорится о его негатив-
ном влиянии [26]. Время экстрагирования и интен-
сивность перемешивания с увеличением температуры 
повышали эффективность экстракции, но снижали 
устойчивость капли [27, 28].

Твердофазная экстракция (ТФЭ). С развитием 
производства сорбентов широкое распространение 
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при анализе пестицидов из разнообразных матриц 
получил метод твердофазной экстракции. Ключе-
вым этапом применения данного метода является 
выбор подходящего сорбента для адсорбции анали-
та, т. к. эффективность применения ТФЭ напрямую 
зависит от характера взаимодействия извлекаемых 
веществ и сорбента [29]. Именно в направлении 
разработки новых типов сорбентов и модернизации 
уже существующих происходит основное развитие 
метода твердофазной экстракции. ТФЭ с исполь-
зованием многостенных нанотрубок предполагает 
использование специальных картриджей, в которые 
помещают данный сорбент. Через данный картридж 
пропускают раствор образца, в ходе чего происходит 
сорбция аналитов на поверхности нанотрубок. После 
этого картридж высушивают и элюируют органиче-
ским растворителем (например, 20 мл дихлормета-
на), в ходе чего происходит десорбция пестицидов 
в органический растворитель. Элюат выпаривают, 
перерастворяют в 1 мл циклогексана и проводят га-
зохроматографический анализ [30].

С развитием метода ТФЭ появилась магнитная 
твердофазная экстракция. Сорбент, являющийся 
магнитным материалом, добавляют в раствор пробы 
и диспергируют с помощью ультразвукового облуче-
ния. После чего сорбент удаляют с помощью сильного 
магнита и элюируют органическим растворителем. 
Снова удаляют сорбент магнитом, а элюат выпаривают 
и перерастворяют в органическом растворителе [31]. 
Ключевыми достоинствами данного метода являются 
экспрессность и дешевизна, однако он не может обес- 
печить сравнимую с другими методами экстракции 
степень извлечения пестицидов из проб.

Метод МТФД (матрично-дисперсионная твер-
дофазная экстракция) как развитие метода ТФЭ 
впервые был представлен в 1989 г. Образцы готовят 
следующим образом: заготовки тканей животных 
массой 0.5 г добавляют к 2 г сорбента С18 (шарики 
диоксида кремния, покрытые октадецилсиланом). 
Образец осторожно перемешивают стеклянным 
пестиком в течение 30 с до получения полусухого 
однородного на вид материала. Добавляют в колон-
ку, объемом 10 мл, содержащую фритт и 0.5 г чисто-
го С18. Затем добавляют еще 0.25 г сорбента сверху 
и утрамбовывают для удаления воздушных карманов. 
После этого через полученную смесь пропускают 
отдельно 4 органических растворителя: гексан, бен-
зол, этилацетат, метанол (объемом по 8 мл). Каждую 
фракцию затем упаривают досуха в атмосфере азо-
та, а потом растворяют в соответствующих органи-
ческих растворителях. Перед проведением анализа 
каждую фракцию подвергают центрифугированию 
и фильтрованию супернатанта [32].

Подход с применением ТФЭ для извлечения пе-
стицидов позволяет достаточно эффективно объе-
динить этапы экстракции и очистки. Данный метод 

использовали для извлечения гербицидов на основе 
фенилмочевины из кормов и кормового сырья [33] 
и батата [34], степень извлечения составляла от 78 
до 102%. Данный метод извлечения применим и для 
жидких образцов – например, фосфор- и хлорорга-
нические пестициды извлекали из проб молока [35], 
степень извлечения составляла 75–105%.

Метод ТФМЭ (твердофазная микроэкстрак-
ция) был представлен в 1990 г. [36] и имел целью 
преодолеть большинство ограничений, связанных 
с классическими методами экстракции. Волокно 
из сплавленного силикагеля с полиимидным по-
крытием активировали, выдерживая в течение 4 ч 
при температуре 350°C, и помещали в специальный 
шприц. Для проведения экстракции данное волокно 
помещали в раствор образца и перемешивали. После 
этого с помощью того же шприца волокно извлекали 
из образца и помещали в инжектор газового хрома-
тографа, где происходила термическая десорбция 
экстрагируемых пестицидов. Это определяло ос-
новные направления развития метода – разработку 
новых типов и совершенствование существующих 
видов волокон и различные варианты модерниза-
ции их покрытий. Применение ионных жидкостей 
в качестве сорбента лишило возможности прямого 
контакта волокна с образцом, что послужило разви-
тием метода ТФМЭ в свободном пространстве [37]. 
Закрытую колбу с 80 мл водного раствора образца, 
содержащего 5 г/л каждого извлекаемого пестици-
да и 30% хлорида натрия, помещали на магнитную 
мешалку с нагревателем. Вводили в колбу иглу и об-
нажали волокно для экстракции, устанавливали тем-
пературу на уровне 70°C и перемешивали в течение 
50  мин. После волокно помещали в инжектор газо-
вого хроматографа и проводили анализ. В настоящее 
время в качестве материалов покрытия для ТФМЭ 
широко используют ковалентные органические кар-
касы [38], углеродные материалы (такие как нано-
трубки или пористые материалы) [39] и металлор-
ганические каркасы [33].

QuEChERS (аббревиатура от Quick, Easy, Cheap, 
Effective, Rugged and Safe или быстрый, легкий, де-
шевый, эффективный, надежный и безопасный). 
Большое разнообразие пестицидов и необходимость 
их регулярного контроля стимулировало разработ-
ку методов комплексного извлечения аналитов. 
QuEChERS – один из методов, широко использу-
емых для одновременного извлечения пестицидов 
различного химического строения [40]. Данный метод 
был разработан с целью одновременного извлечения 
полярных и неполярных пестицидов. Данный под-
ход получил настолько широкое распространение, 
что некоторые его модификации стали стандартны-
ми – их принимают международные регулирующие 
органы, такие как Европейский комитет и AOAC 
(Association of Official Agricultural Chemists). При вы-
полнении метода QuEChERS существуют 3 общие 
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стандартные процедуры. Это оригинальный (без 
использования буфера) метод QuEChERS, метод 
AOAC QuEChERS и метод EN QuEChERS, предпо-
лагающий использование буфера (табл. 3).

Все стандартные модификации метода QuEChERS 
на сегодняшний день активно используют для из-
влечения и последующего определения содержания 
пестицидов в объектах окружающей среды [41–57].

Дальнейшее развитие данный метод извлечения 
пестицидов получил через попытки решения про-
блем извлечения аналитов из особо сложных матриц 
и извлечения пестицидов, чувствительных к вели-
чине рН. Применение метода QuEChERS к рН‑чув-
ствительным пестицидам проблематично. Такие 
пестициды могут быть кислотными или основны-
ми. Кислотные пестициды имеют карбоксильные 
группы и могут быть ковалентно связаны с компо-
нентами матрицы, что затрудняет их извлечение при 
использовании методов QuEChERS [58, 59]. Некото-
рые кислые пестициды также образуют мезомерные 
структуры. Электроны, образующие двойные связи 
в сопряженных кислотных пестицидах, могут пере-
ходить между атомами, слегка изменяя структуру 
молекулы. Таким образом, молекула пестицида фак-
тически существует в гибридном состоянии между 
различными структурами, образованными вариаци-
ями связей. Образование этих мезомерных структур 
усложняет хроматографический анализ кислотных 
пестицидов. Кислотные пестициды ионизируются 
в водной среде, эти ионные формы гидрофильны, 
их трудно экстрагировать с использованием органи-
ческих неполярных растворителей. Таким образом, 
стандартные методы QuEChERS должны были быть 

изменены, чтобы обеспечить эффективное извлече-
ние кислотных пестицидов.

Сорбенты ПВА являются основными и не подхо-
дят для использования при извлечении кислотных 
пестицидов, ввиду образования кислотно-основных 
связей с сорбентом. Отказ от использования сорбентов 
ПВА предотвращает потерю кислотных пестицидов 
в процессе очистки [60]. Еще одной важной модифи-
кацией стандартных методов QuEChERS при анализе 
кислотных пестицидов является включение стадии 
щелочного гидролиза. Щелочной гидролиз разрушает 
ковалентные связи, образующиеся между компонен-
тами матрицы и кислотными пестицидами, тем самым 
освобождая пестициды во время экстракции [61].

Матрицы с высоким содержанием липидов от-
носятся к числу проблемных матриц при исполь-
зовании метода QuEChERS. Некоторые пестициды 
липофильны и образуют связи с липидами. Поэто-
му они абсорбируются и задерживаются жировым 
слоем, например, в тканях животных, что является 
причиной низкой степени извлечения пестицидов 
из подобных образцов [62, 63]. С другой стороны, 
некоторые жиры соэкстрагируются при извлече-
нии пестицидов методом QuEChERS. Эти липиды 
будут являться серьезной помехой при проведении 
хроматографического анализа, поскольку они могут 
вызвать засорение аналитических колонок. Таким 
образом, стандартные методы QuEChERS должны 
быть модифицированы для работы с матрицами 
с высоким содержанием жира.

Соэкстрагирование липидов можно значитель-
но сократить, включив в метод QuEChERS этап 

Таблица 3. Сравнение стандартных методов QuEChERS

Оригинальный метод EN QuEChERS AOAC QuEChERS
Экстракция

10 мл ацетонитрила добавляют 
к 10 г гомогенизированного 

образца и перемешивают
15 мл 1%-ной уксусной кислоты в ацетонитриле добавляют к 15 г 

гомогенизированного образца и перемешивают

Добавляют 4 г сульфата 
магния и 1 г хлорида натрия, 
центрифугируют смесь после 

перемешивания в течение 5 мин 
при 5000 об./мин

Добавляют 6 г сульфата 
магния и 1.5 г ацетата натрия, 
центрифугируют смесь после 

перемешивания в течение 1 мин 
при >1500 об./мин

Добавляют 4 г сульфата магния, 
1 г хлорида натрия, 

0.5 г гидроцитрата натрия, 
1 г цитрата натрия, центрифугируют 

смесь после перемешивания 
в течение 5 мин при 3000 об./мин

Очистка

1 мл супернатанта 
добавляют к 150 мг сульфата 

магния и 50 мг ПВА, 
смесь перемешивают 

и центрифугируют 1 мин при 
6000 об./мин

1 мл супернатанта добавляют 
в пробирку, содержащую 
сульфат магния и сорбент 

или смесь сорбентов (ПВА, 
С18, GCB), перемешивают 

и центрифугируют 1 мин при 
>1500 об./мин

1 мл супернатанта добавляют 
к 150  мг сульфата магния 

и 25 мг  ПВА (и 2.5 или 7.5 мг GCB, 
если образец пигментирован), 

смесь перемешивают 
и центрифугируют 5 мин 

при 3000 об./мин
Супернатант используют для анализа
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жидкость-жидкостной экстракции гексаном [49, 
58]. Кроме того, во время анализа объектов с высо-
ким содержанием жира в матрице можно выполнить 
этап вымораживания в течение ночи для удаления 
совместно экстрагирующихся липидов, а также дру-
гих компонентов, растворимых в ацетонитриле [64].

Метод QuEChERS наиболее эффективен для экс-
тракции пестицидов из образцов с высоким содержа-
нием воды, таких как фрукты и овощи. Для образцов 
с низким содержанием воды добавляют дополни-
тельную воду для обеспечения оптимального про-
цесса экстрагирования. Технику гидратации сухих 
образцов успешно использовали во время анализа 
образцов зерновых (молотый рис, пшеничная мука 
и молотая кукуруза) с использованием методологии 
QuEChERS [65, 66].

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПЕСТИЦИДОВ

За последние десятилетия было разработано 
множество аналитических методов детектирования 
и определения содержания пестицидов в образцах 
объектов окружающей среды и продуктов питания. 
Большое разнообразие аналитов и матриц предпола-
гает применение различных методов анализа. Чаще 
всего используют газовую хроматографию и высоко-
эффективную жидкостную хроматографию.

Высокоэффективную жидкостную хроматогра-
фию (ВЭЖХ) применяют в качестве метода разде-
ления и определения высокополярных нелетучих 
пестицидов. При проведении анализа ВЭЖХ ее ча-
сто сочетают с ультрафиолетовым детектированием 
(УФ) [67–71] или детектором с диодной матрицей 
(ДМ) [72–74]. Однако у данных методов отмечен ряд 
критических недостатков. Например, было проведе-
но определение 323 пестицидов методами ВЭЖХ-УФ 
и ГХ-МС [67], 300 из которых определяли с помощью 
ГХ-МС, а 23 – ВЭЖХ-УФ. При идентичной пробо-
подготовке для обоих методов (авторы использова-
ли метод QuEchERS) ВЭЖХ-УФ показала большее 
влияние матричных эффектов на результаты опре-
деления, а пределы обнаружения пестицидов нахо-
дились в диапазоне 0.0025–0.005 для метода ГХ-МС 
и 0.003–0.027 мг/кг – для метода ВЭЖХ-УФ. В дру-
гой работе при определении диквата, параквата, 
этилвиологена	 и дифенцоквата [69] для миними-
зации матричных эффектов использовали метод 
МТФД. Однако для подбора оптимальных условий 
экстрагирования необходимо варьировать множество 
параметров, таких как количество используемого 
сорбента и элюента, тип элюента, тип подвижной 
фазы для проведения ВЭЖХ-УФ и время проведе-
ния экстракции, что является трудозатратным про-
цессом. Применение масс-селективных детекторов 
в методе ВЭЖХ усугубляет эту проблему, т. к. наличие 
компонентов матрицы в анализируемых экстрактах 

не только мешает проведению количественного ана-
лиза, но может также привести к быстрому износу 
дорогостоящего оборудования.

Однако нельзя не отметить ряд достоинств, бла-
годаря которым методы, основанные на жидкостной 
хромато-масс-спектрометрии, получили широкое 
распространение. Применение масс-селективных 
детекторов позволяет идентифицировать большое 
количество разнообразных пестицидов и определять 
их на уровне десятых частей нанограмма на кило-
грамм пробы, что делает его наилучшим выбором 
при проведении научно-исследовательских работ. 
Однако для проведения мониторингового, рутинного 
анализа его использование представляется нецеле-
сообразным ввиду дороговизны.

Газовая хроматография (ГХ) лишена большин-
ства недостатков ВЭЖХ и сохраняет преимущества 
масс-селективного детектирования при его использо-
вании. Это позволило данному методу стать наиболее 
распространенным хроматографическим методом 
определения пестицидов. Газовая хроматография 
больше всего подходит для разделения неполярных, 
летучих и легко испаряющихся соединений. Суще-
ствует большое разнообразие детекторов, применя-
емых совместно с газовой хроматографией с целью 
определения пестицидов. Среди них пламенно-фото-
метрические детекторы (ПФД) [75, 76], азотно-фос-
форные детекторы (АФД) [77, 78], пламенно-иони-
зационные детекторы (ПИД) [79], однако наиболее 
популярными являются электронозахватные детек-
торы (ЭЗД) [80, 81] и масс-селективные детекторы 
(МСД) [82–86].

Главным преимуществом ЭЗД является высокая 
чувствительность и селективность по отношению 
ко многим пестицидам при сравнительной дешевиз-
не оборудования. ГХ-ЭЗД позволяет детектировать 
порядка 1.7 нг хлорорганических пестицидов/л [80] 
и 1.4 нг фосфорорганических пестицидов/л [81]. 
Однако данный метод обладает существенным не-
достатком – ввиду невозможности полного хромато-
графического разделения всех аналитов при попыт-
ках одновременного определения широкого спектра 
пестицидов происходит наложение времен удержи-
вания соединений и, как следствие, проведение их 
идентификации становится невозможным. Также 
велико влияние матрицы на результаты исследова-
ния образца, вследствие чего требуется проведение 
дополнительной идентификации методом газовой 
хромато-масс-спектроскопии (ГХ-МС).

Главными преимуществами газовой хромато-масс-
спектрометрии являются высокая чувствительность, 
возможность одновременного определения сотен 
действующих веществ пестицидов, низкое влияние 
матричных компонентов на проведение анализа 
и возможность использования микрообъемов проб. 
Кроме того, данный метод подлежит стандартизации: 
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большинство работ выполняют на одних и тех же 
колонках (кварцевая капиллярная колонка 30 м × 
0.25 мм × 0.25 мкм, реже используют колонки с дли-
ной 50 или 15 м), в качестве газа-носителя используют 
высокочистый гелий, ионизацию осуществляют с по-
мощью электронного удара при энергии 70 эВ. При 
этих условиях масс-спектры определяемых пестицидов 
обладают крайне высокой воспроизводимостью. Это 
позволяют накапливать большие библиотеки данных, 
что облегчает идентификацию пестицидов.

Температурный режим термостатирования га-
зохроматографической колонки является одним 
из важнейших факторов разделения пестицидов. 
Программная настройка температурных режимов 
дает возможность одновременного определения сотен 
действующих веществ пестицидов: низкая скорость 
повышения температуры способствует более полно-
му хроматографическому разделению веществ, одна-
ко при этом время анализа может достигать 50 мин 
и более, что не всегда является приемлемым. При 
совместном определении 300 пестицидов [67] изна-
чальная температура печи составляла 70°C, посте-
пенно ее повышали со скоростью 25°C/мин до 120°C, 
затем со скоростью 5°C/мин до 300°C. Общее время 
анализа составило 56.8 мин. При определении спец-
ифических, легко разделяющихся пестицидов можно 
сократить время анализа до 14 мин, как в работе  [87]. 
Начальная температура печи также составляла 70°C, 
которую повышали до 180°C со скоростью 60°C/мин. 
После этого нагрев уменьшали до 40°C/мин до 300°C.

Чаще всего температурный режим термостата га-
зохроматографической колонки представлен следую-
щим образом: начальная температура печи составляет 
50–100°C. Удержание этой температуры применяют, 
как правило, при использовании пробоподготовки 
по методу QuEChERS, и оно длится не более 5 мин. 
Этот этап является необходимым, т. к. экстракты, 
полученные с помощью данного метода, содержат 
большое количество солей, которые могут повредить 
детектор. Затем температуру быстро (со скоростью 
15–50°C/мин) поднимают до промежуточного пла-
то (200–230°C), после чего нагревание замедляют 
(до 5–10°C/мин), доводят температуру печи до мак-
симальной (280–300°C) и выдерживают до завер-
шения анализа. Подобный температурный режим 
представляет из себя компромисс между эффектив-
ностью хроматографического разделения пестици-
дов и экспрессностью проведения анализа [87–108].

В последнее время в зарубежной литературе ак-
тивно набирает популярность многомерная газовая 
хроматография (ГХxГХ). Данный метод действитель-
но предоставляет ряд критических преимуществ, 
таких как кратное увеличение чувствительности 
по сравнению с классическим ГХ-МС, еще большее 
снижение матричных эффектов, возможность од-
новременного эффективного разделения полярных 

и неполярных пестицидов за счет использования 
разных колонок. При этом данный метод нацелен 
в первую очередь на определение следовых количеств 
целевых пестицидов, а не на мониторинговые иссле-
дования, предполагающие определение и идентифи-
кацию значительно большего количества аналитов 
за единичный анализ. Кроме того, обычно ГХхГХ 
используют совместно с масс-спектрометрией вы-
сокого разрешения (тандемная масс-спектрометрия, 
времяпролетные детекторы, орбитальные ловушки), 
что еще сильнее увеличивает цену единичного ана-
лиза и делает рутинное применение данного метода 
нецелесообразным [109–118].

Отдельно стоит поговорить о газовой хрома-
то-масс-спектрометрии высокого разрешения 
(ГХ-МСВР). Масс-селективные детекторы с трой-
ным квадруполем, времяпролетные детекторы и де-
текторы с орбитальной ловушкой обладают на по-
рядки большей чувствительностью по сравнению 
с масс-селективными детекторами низкого разреше-
ния, при этом условия проведения газохроматогра-
фического разделения определяемых веществ прак-
тически никак не отличаются [119–123]. Ключевым 
отличием масс-селективных детекторов с высоким 
разрешением является принцип идентификации 
и детектирования веществ. Например, в случае ис-
пользования масс-селективного детектора с 3-мя 
квадруполями идентификацию проводят не по се-
лективным ионам, а по селективным реакциям, что 
и позволяет значительно увеличить чувствительность 
анализа [124–127]. Это определяет высокий интерес 
в научном сообществе, однако с прикладной точки 
зрения на сегодняшний день методы масс-спектро-
метрии высокого разрешения являются несравнимо 
более дорогими в плане проектирования, изготов-
ления и содержания аналитического оборудования.

ЗАКЛЮЧЕНИЕ

Таким образом, наиболее распространенными 
методами идентификации и определения содержания 
пестицидов являются газовая хроматография, ультра-
высокоэффективная и высокоэффективная жидкост-
ная хроматография в сочетании с масс-селективными 
детекторами высокого и низкого разрешения с экс-
трагированием пестицидов по методу QuEChERS.

Выбор аналитического метода напрямую зависит 
от поставленной цели, определяемых пестицидов 
и объекта анализа. В частности, матричный эффект 
намного более выражен в методах жидкостной хрома-
тографии, чем газовой. Кроме того, часто применение 
ВЭЖХ и УВЭЖХ для определения пестицидов тре-
бует проведения дериватизации, что повышает цену 
анализа и затрудняет внедрение принципов зеленой 
химии. Газовая хроматография лишена таких недо-
статков. При этом метод масс-спектрометрии низкого 
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разрешения чаще применяют для мониторинговых 
исследований, для идентификации большого спектра 
неизвестных веществ, а применение масс-спектро-
метрии высокого разрешения более актуально при 
определении целевых пестицидов с крайне низкими 
содержаниями определяемых веществ.

Есть основания полагать, что дальнейшее разви-
тие методов извлечения и определения пестицидов 
будет фокусироваться на повышении чувствитель-
ности к отдельным действующим веществам, разви-
тию методик совместного определения пестицидов, 
увеличению экспрессности анализа и внедрению 
принципов зеленой химии.
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Many active substances of pesticides are dangerous toxicants that can disrupt the stability of natural and 
agricultural ecosystems and cause irreversible harm to human health when ingested. In addition, from sev-
eral units to several dozens of new active substances of pesticides and products based on them are developed 
annually. This determines the critical need to control their use and content in environmental objects, espe-
cially in agricultural products. The development of modern chemical analytical methods helps to increase 
the effectiveness of such control. Improving the methods of extracting pesticides from extremely complex 
matrices of soils and agricultural products can significantly speed up and reduce the cost of conducting a 
single analysis, and improving analytical equipment allows to determine the picogram contents of target 
pesticides or conduct monitoring studies of samples to identify pollutants.
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