RAS BiologyАгрохимия Agricultural Chemistry

  • ISSN (Print) 0002-1881
  • ISSN (Online) 3034-4964

Activities and Kinetic Parameters of Carboxylesterases in Model Insects depending on a Substrate of the Enzyme

PII
10.31857/S0002188124030063-1
DOI
10.31857/S0002188124030063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
43-49
Abstract
House flies Musca domestica L. (Diptera: Muscidae) serve as a common model organism for testing of insecticides and research of insecticidal resistance mechanisms in insects. One of important stages is to assess of detoxifying enzyme activities including carboxylesterase activities (CarE). In this study, we compared specific activities and kinetic parameters (Vmax and Km) of CarE in adults M. domestica of two laboratory strains (TY, UF) depending on the enzymatic substrate used. The specific CarE activities towards α- and β-naphthyl acetate (α-NA and β-NA) were similar in both males and females of the TY strain. In males of the UF strain, the value of the specific and the maximal velocity (Vmax) of β-NA hydrolysis was 1.90- and 1.57-fold respectively less than that of α-NA; this difference was not observed in females of the same strain. Some characteristics of CarE varied depending on sex of insects when p-nitrophenyl acetate was used as an enzymatic substrate. In particular, the specific activity was 1.62-fold less in males of the UF strain compared to this value in females. The activity and main kinetic parameters of CarE towards α-NA not differed statistically significant depending on sex and the strains. Based on the results obtained we suggest that α-naphthyl acetate is the preferred substrate to evaluate the CarE enzymatic activity in the model insect M. domestica of different strains.
Keywords
насекомые M. domestica L. детоксикация инсектицидов кинетические параметры карбоксилэстеразы константа Михаэлиса максимальная скорость реакции
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Sparks T.C., Crossthwaite A.J., Nauen R., Banba S., Cordova D., Earley F., Ebbinghaus-Kintscher U., Fujioka S., Hirao A., Karmon D., Kennedy R., Nakao T., Popham H.J.R., Salgado V., Watson G.B., Wedel B.J., Wessels F.J. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification – A tool for resistance management // Biochem. Physiol. 2020. V. 167. 104587. https://doi .org/10.1016/j.pestbp.2020.104587
  2. 2. Shah R.M., Shad S.A. Genetics and mechanism of resistance to chlorantraniliprole in Musca domestica L. (Diptera: Muscidae) // Ecotoxicology. 2021. V. 30. P. 552– 559. https://doi.org/10.1007/s10646-021-02390-w
  3. 3. Bass C., Jones M. Editorial overview: Pests and resistance: Resistance to pesticides in arthropod crop pests and disease vectors: mechanisms, models and tools // Curr. Opin. Insect Sci. 2018. V. 27. P. 4–7. https://doi.org/10.1016/j.cois.2018.04.009
  4. 4. Scott J.G., Warren W.C., Beukeboom L.W. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment // Genome Biol. 2014. V. 15(10). 466. https://doi .org/10.1186/s13059-014-0466-3
  5. 5. Давлианидзе Т.А., Еремина О.Ю., Олифер В.В. Резистентность к инсектицидам комнатной мухи Musca domestica в центре европейской части России // Вестн. защиты раст. 2022. Т. 105. № 3. С. 114–121. https://doi .org/10.31993/2308-6459-2022-105-3-15346
  6. 6. Jensen S.E. Insecticide resistance in the western flower thrips, Frankliniella occidentalis // Integrat. Pest Manag. Rev. 2000. V. 5. P. 131–146. https://doi .org/10.1023/A:1009600426262
  7. 7. Oakeshott J.G., van Papenrecht E.A., Boyce T.M., Healy M.J., Russell R.J. Evolutionary genetics of Drosophila esterases // Genetica. 1993. V. 90. P. 239–268. https://doi .org/10.1007/BF01435043
  8. 8. Gao M., Mu W., Wang W., Zhou C., Li X. Resistance mechanisms and risk assessment regarding indoxacarb in the beet armyworm, Spodoptera exigua // Phytoparasitica. 2014. V. 42. P. 585–594. https://doi .org/10.1007/s12600-014-0396-3
  9. 9. Li C., Li Z.Z., Cao Y., Zhou B., Zheng X. Partial characterization of stress-induced carboxylesterase from adults of Stegobium paniceum and Lasioderma serricorne (Coleoptera: Anobiidae) subjected to CO2-enriched atmosphere // J. Pest. Sci. 2009. V. 82. P. 7–11. https://doi .org/10.1007/s10340-008-0221-1
  10. 10. Zou C.S., Cao C.W., Zhang G.C., Wang Z.Y. Purification, characterization, and sensitivity to pesticides of carboxylesterase from Dendrolimus superans (Lepidoptera: Lasiocampidae) // J. Insect Sci. 2014. V. 14(260). P. 1–6. https://doi .org/10.1093/jisesa/ieu122
  11. 11. Bai L.S., Zhao C.X., Xu J.J., Feng C., Li Y.Q., Dong Y.L., Ma Z.Q. Identification and biochemical characterization of carboxylesterase 001G associated with insecticide detoxification in Helicoverpa armigera // Pest. Biochem. Physiol. 2019. V. 157. P. 69–79. https://doi .org/10.1016/j.pestbp.2019.03.009
  12. 12. Yin F., Ma W., Li D., Zhang X., Zhang J. Expression and kinetic analysis of carboxylesterase LmCesA1 from Locusta migratoria // Biotechnol. Lett. 2021. V. 43. P. 995– 1004. https://doi.org/10.1007/s10529-021-03086-1
  13. 13. Feng X., Liu N. Functional analyses of house fly carboxylesterases involved in insecticide resistance // Front. Physiol. 2020. V. 11. 595009. https://doi .org/10.3389/fphys.2020.595009
  14. 14. Zhang Y., Guo M., Ma Z., You C., Gao X., Shi X. Esterase-mediated spinosad resistance in house flies Musca domestica (Diptera: Muscidae) // Ecotoxicology. 2020. V. 29. P. 35–44. https://doi .org/10.1007/s10646-019-02125-y
  15. 15. Carvalho S.M., Belzunces L.P., Carvalho G.A., Brunet J.L., Badiou-Beneteau A. Enzymatic biomarkers as tools to assess environmental quality: A case study of exposure of the honeybee Apis mellifera to insecticides // Environ. Toxicol. Chem. 2013. V. 32. P. 2117–2124. https://doi .org/10.1002/etc.2288
  16. 16. Wei D.D., He W., Miao Z.Q., Tu Y.Q., Wang L., Dou W., Wang J.J. Characterization of esterase genes involving malathion detoxification and establishment of an RNA interference method in Liposcelis bostrychophila // Front. Physiol. 2020. V. 11. Р. 274. https://doi .org/10.3389/fphys.2020.00274
  17. 17. BRENDA Enzyme Database – URL: https://www.brenda-enzymes.org/ (дата обращения: 21.06.2023).
  18. 18. Wu H., Yang M., Guo Y., En-bo M.A. The Susceptibilities of Oxya chinensis (Orthoptera: Acridoidea) to malathion and comparison of the esterase properties from three collected populations in Tianjin Area, China // Agricult. Sci. China. 2009. V. 8(1). V. 76–82. https://doi .org/10.1016/s1671-2927(09)60011-0
  19. 19. Vishnu Priya S., Somasundaram P. Bio-molecular characterization of stress enzyme profile on esterase in selected silkworm races of Bombyx mori (L.) for biomarker selection // Adv. Biomarker Sci. Technol. 2019. V. 1. P. 9–16. https://doi .org/10.1016/j.abst.2019.05.002
  20. 20. Chen J., Rashid T., Feng G. Esterase in imported fire ants, Solenopsis invicta and S. richteri (Hymenoptera: Formicidae): Activity, kinetics and variation // Sci. Rep. 2014. V. 4(7112). https://doi.org/10.1038/srep07112
  21. 21. Quantification methodology for enzyme activity related to insecticide resistance in Aedes aegypti. Ministry of Health of Brazil, Fundação Oswaldo Cruz. Brasília: Ministério da Saúde, 2006. 128 p.
  22. 22. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent // J. Biol. Chem. 1951. V. 193(1). P. 265–275.
  23. 23. Abdel-Aal Y.A.I., Lampert E.P., Wolff M.A., Roe R.M. Novel substrates for the kinetic assay of esterases associated with insecticide resistance // Experientia. 1993. V. 49. P. 571–575. https://doi .org/10.1007/BF01955166
  24. 24. Lopes V.F., Cabral H., Machado L.P., Mateus R.P. Purification and characterization of a specific late-larval esterase from two species of the Drosophila repleta group: contributions to understand its evolution // Zool. Stud. 2014. V. 53(6). https://doi .org/10.1186/1810-522X-53-6
  25. 25. Milone J.P., Rinkevich F.D., McAfee A., Foster L.J., Tarpy D.R. Differences in larval pesticide tolerance and esterase activity across honey bee (Apis mellifera) stocks // Ecotoxicol. Environ. Saf. 2020. V. 206. 111213. https://doi .org/10.1016/j.ecoenv.2020.111213
  26. 26. Khatuna S., Mandia M., Rajakb P., Roy S. Interplay of ROS and behavioral pattern in fluoride exposed Drosophila melanogaster // Chemosphere. 2018. V. 209. P. 220–231. https://doi .org/10.1016/j.chemosphere.2018.06.074
  27. 27. Hu X., Fu W., Yang X., Mu Y., Gu W., Zhang M. Effects of cadmium on fecundity and defence ability of Drosophila melanogaster // Ecotoxicol. Environ. Saf. 2019. V. 171. P. 871–877. https://doi .org/10.1016/j.ecoenv.2019.01.029
  28. 28. Hall J.C. Age-dependent enzyme changes in Drosophila melanogaster // Exp. Gerontol. 1969. V. 4. P. 207–222.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library